CS/B.TECH(N)/EVEN/SEM-8/8318/2022-2023/I130

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code : PC-EEE-801 Digital signal processing

1 Craw	3	UPID : 008318	
Time	Allo	- tted : 3 Hours	Full Marks :70
50	130	The Figures in the margin indicate full marks. Candidate are required to give their answers in their own words as far as practicable	
		Group-A (Very Short Answer Type Question)	
. An	swer	any ten of the following :	[1 x 10 = 10]
	(1)	Appending zeros to a sequence in order to increase its length is called	
	(11)	What are the various basic methods of sampling rate conversion in digital domain?	
	(111)	Write the full form of MMSE.	
	(IV)	What is an Energy Signal?	
	(V)	What is another term used for two-sided Z-transform?	
	(VI)	In DFT computation using radix-2 FFT, the value of N should be such that	
	(VII)	State the convolution property of Z transform.	
	(VIII)	The convolution by FFT is called	
	(IX)	The phenomena of high frequency components acquiring the identity of low frequency components	nts is called
	(X)		
	(×)	what is stationary process?	
	(XII)	A discrete time system is if its input-output relationship do not change with time.	
	(711)	The inverse 2-transform of transfer function is of the system.	
		Group-B (Short Answer Type Question)	
		Answer any three of the following :	[5 x 3 = 15]
2.	Wha	it is Discrete Time Systems?	[5]
20	Writ	te the Various classifications of Discrete-Time systems.	74 × 30 1920
3.	Stat	e and prove the time shifting property of Z transform.	[5]
4.	Brie	fly discuss on the representation methods of discrete time signals.	[5]
5.	Stat	e and prove the convolution property of Z transform.	[5]
6.	Perf	orm the correlation of the two sequences, $x(n) = \{1, 2, 3\}$ and $y(n) = \{2, 4, 1\}$.	[5]
		Group-C (Long Answer Type Question)	
		Answer any three of the following :	[15 x 3 = 45]
7.	(a)	What are all the properties of ROC of Discrete Time Signals?	[8]
	(b)	State and prove Final Value theorem of Z-transform.	[7]
8.	(a)	Calculate the DFT of the sequence, x(n)={1,1,-2,-2}	[4]
	(b)	Compare the DIT and DIF radix- 2 FFT.	[5]
	(c)	Compute 4-point DFT of causal three sample sequence given by, $x(n)=1/3$; $0 \le n \le 2$ = 0; else	[6]
9.	(a)	Find the Z-transform of the discrete time signal generated by mathematically sampling the following continuous signal $\cos\Omega_0 t$.	:he [5]
	(b)	Determine the inverse Z transform of the following Z domain function	[6]
	130	$X(Z) = \frac{(2z-4)}{((z-1))(z+2)^2}$	
	(c)	Determine the Z transform of x(n)=(n-3)u(n).	[4]
10.	(a)	Compare the overlap add and overlap save methods of sectioned convolution.	151

10. (a) Compare the overlap add and overlap save methods of sectioned convolution. (b) Compute the circular convolution of two sequences, $x_1(n) = \{0,1,0,1\}$, and $x_2(n) = \{1,2,1,2\}$ using DFT.

[7]

	(c)	Perform the circular convolution of the two sequences $x1(n)=\{1,2,3\}$ and $x2(n)=\{4,5,6\}$.	[3]
11.	(a)	Find the DFT of the sequence x(n)={1,1,0,0}.	[5]
	(b)	Find the 8-point DFT of the sequence x(n)={0,1,2,3,4,5,6 7}, using DIF, radix-2, FFT algorithm.	[5]
	(c)	Find the IDFT of the sequence X(k)={10,-2+2j,-2,-2-2j}.	[5]

*** END OF PAPER ***